
IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-12
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

49 www.ijdcst.com

Dupian: Duplicate Code Analyzer using Ontology Editor

Rayavarapu Veeranjaneyulu1, Singaraju Srinivasulu2

1 Professor, Department of IT, Pace Institute of Technology and Sciences, Ongole.

2Assoc. prof, Department of IT, Pace Institute of Technology and Sciences, Ongole.

Abstract: Plagiarism, copying, rewriting is basic

things to modify the text or content according to the

detected content. Likewise, now a day’s Duplicate

code becomes the major issue to find out and remove

the code from the copied code. Existing, there are so

many duplicate or cloning code detectors are

available in the real world but the accuracy of

detecting code is very low. In this paper, we proposed

dupian which identifies the duplicate code.

We implemented the code processing algorithm and

code matching algorithm approach by using

Ontology Editor. Proposed system will detect clone

from c, c++, JavaScript & HTML languages and

results will show the accuracy of finding the

duplicate code up to 70%.

Keywords: Dupian, Clone, Ontology.

1. INTRODUCTION:

Code cloning is found to be more serious problem in

industrial software. It is observed to have negative

impact on software evolution. According to studies

on open source and commercial code, 66% of cloned

code is modified, i.e. it's not an identical clone [1].

Also, detecting the maximal clone pattern is very

challenging as the input is not known in advance. It is

similar to looking for all the pairs or tuples of people

that match each other in a very large population.

Several search and hashing-based solutions have

been suggested in the past, but they all lack accuracy

and coverage. Several studies show that software

with code cloning is more difficult to maintain, then

the software without code [3, 4, 5], because the code

clone increases maintenance costs [2].

It may adversely affect the software system quality,

maintainability and comprehensibility. This paper

provides an improved analysis, identification and

removal Technique for these code clones and also to

develop ontology editor use some components like

 Classes: sets, collections, concepts, classes

in programming, types of objects, or kinds of

things

 Attributes: aspects, properties, features,

characteristics, or parameters that objects (and

classes) can have

 Relations: ways in which classes and

individuals can be related to one another clones

are segments of code that are similar according

to some definition of similarity. —Ira Baxter,

2002.

Dupian will scan your source code and attempt to

identify methods that are functional duplicates of

another method. Once a clone is identified dupian

http://en.wikipedia.org/wiki/Class_(set_theory)
http://en.wikipedia.org/wiki/Class_(set_theory)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Class_(philosophy)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Relation_(mathematics)

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-12
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

50 www.ijdcst.com

will prompt the user to replace the body of a method

with a call to its clone.

In this paper, our proposed implemented the code

processing algorithm and code matching algorithm

approach is implemented as tool developed in JAVA.

This tool efficiently and effectively detects the

duplicate code from the various resources and

identifies the similarity code. A better and effective

code editor is developed for users to use the tool.

This paper contains four major sections. Section II

describes about the related research work are

currently implemented in various domain. Section III

describes the implementation of the proposed

method. Finally, Section III concludes the paper.

II. RELATED WORK:

While there is an on-going debate as to whether

remove clones, there is a consensus about the

importance to at least detect them. Clone avoidance

during normal development, as described in the

previous section, as well as making sure that a

change can be made consistently in the presence of

clones requires knowing where the clones are.

Manual clone detection is infeasible for large

systems; hence, automatic support is necessary.

Automated software clone detection is an active field

of research [2]. This section summarizes the research

in this area. The techniques can be distinguished at

the first level in the type of information their analysis

is based on and at the second level in the used

algorithm. Some of the clone detection tools describe

below.

A.1PMD (http://www.PMD.sourceforge.net/)

It scans Java source code and looks for potential

problems like duplicate code, possible bugs, and dead

code. PMD allows the user to set the metrics

thresholds for clone detection and allows setting the

number of tokens of duplicated code; we chose to

keep the default configuration (25 tokens).

B. Bauhaus (http://www.bauhaus-stuttgart.de/)

It provides support to analyze and recover a system's

software architecture; several maintenance tasks are

supported as the derivation of different views on the

architecture of legacy systems, identification of

reusable components, and estimation of change

impact.

The Bauhaus module for finding duplicated code

looks for three types of clones: portions of identical

code, their variation with different variable names

and identifiers, and portions of identical code with

added or removed statements.

C. Google CodePro Analytix

(https://developers.google.com/java-dev

tools/codepro/doc/)

It is a Java testing tool for Eclipse developers who

are concerned about improving software quality. The

main features are related to code analysis, metrics

computation, JUnit test generation, dependency

analysis, and similar code analysis. For clone

detection, the tool offers three types of search:

(1) code that can possibly be refectory, (2) code that

contains possible renaming errors, and (3) just looks

similar. We chose the last option to find as many

duplicated code occurrences as possible.

D. SIMIAN - SIMILARITY ANALYSER

http://www.pmd.sourceforge.net/
http://www.bauhaus-stuttgart.de/
https://developers.google.com/java-dev%20tools/codepro/doc/
https://developers.google.com/java-dev%20tools/codepro/doc/

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-12
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

51 www.ijdcst.com

Simian (Similarity Analyser) acknowledges

duplication in Java, C#, C, C++, COBOL, Ruby, JSP,

ASP, HTML, XML, Visual Basic, Groovy ASCII

text file and even plain content documents. Indeed,

simian are often used on any accessible records, for

instance, ini documents, arrangement descriptors, you

name it.

Particularly on Projects like enterprise resource

management, it are often difficult for anyone

engineer to keep on regarding all the highlights

(classes, methods, properties, and so on.) of the

framework.

Simian runs regionally in any .NET 1.1 or higher

upheld atmosphere and on any Java five or higher

virtual machine, significance Simian is often run on

just about any instrumentality and any operating

framework you'll look for once. Each the Java and

.NET runtimes are incorporated as a element of the

dispersion.

Simian are often used as an element of the

manufacture methodology amid improvement or as

AN aide once re-calculating. Think about Simian a

free mix of eyes which will facilitate in raising the

character of your product.

Inside minutes, Simian will spare you truly an

outsized variety of bucks in time spent acting

maintenance, troubleshooting and re-calculating.

Running against a huge supply base, for instance, the

complete 390,309 LOC* (1.2 million lines of crude

source) in four, 242 documents of the JDK

one.5.0_13 supply, distinguished sixty six, 375 copy

LOC* in one, 260 records in underneath ten seconds

utilizing as meager as 48M of heap**!

* A line of code is any line thought to be crucial.

Clear lines, remarks, soon do not tally towards this

figure.

** Results could amendment relying upon variables,

for instance, equipment, operating framework,

making ready selections, and so on.

Envision as an example that a bug is found in a very

strategy some place in a very task. The engineer

properly composes AN experiment, rolls out the

essential code enhancements, guarantees the check

passes, weighs the code in and considers the

utilization wrapped up!

Correct?

Off-base!

Obscure to the engineer, many weeks previous, a

kindred partner found identical little bit of code and

understood that it did almost all that they expected to

tackle a difficulty they were taking an effort at the

time. So that they duplicated the fifteen lines of code

into their new system, side some a lot of code to try

and do the extra utility duty-bound and weighed

within the progressions.

Obviously what they did not understand at the time

was that the code they were duplicating had a bug in

it! Truly at the time no one knew this. therefore

currently the primary bug has been altered but

shockingly none of the duplicates were settled in

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-12
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

52 www.ijdcst.com

light-weight of the actual fact that no-one knew they

even existed.

Duplicating and gluing is not the main route for this

to happen. Copy code will likewise crawl into

through designers freely actualizing comparable

highlights.

Simian gets these and completely different occasions

of duplication and might be organized to either signal

them as notices or maybe "break the build",

guaranteeing that duplicate and projected nevermore

causes you or your endeavor problems.

III. IMPLEMENTATION OF PROPOSED

SYSTEM:

The proposed system is implemented in java which is

more user-friendly and gives good result.

A. Ontology Editor Tool- An Advanced Code

Editor:

According to our proposed system, we designed the

ontology editor tool we have to paste the code in the

editor for the identifying of clone.

 In this paper, we have implemented the code

processing algorithm. It will check the code and

identify the programming language and process the

line by line code.

Algorithm 1:

Step 1: Start

Step 2: Declare the variable with number of lines of

code.

Step 3: Analyze the Programming code.

Step 4: Interpret all the lines of code.

Step 5: Identify the programming language.

Step 6: Ready for duplicate code matching.

Step 7: Stop

Also we have implemented the code matching

algorithm. It will check the duplicate code from the

various resources and show the accurate result.

Algorithm 2:

Step 1: Start

Step 2: Match the no of lines

Step 3: Search the similar code from various

resources using word search

Step 4: Detect the matched code

Step 5: Calculate the % of the duplicate code

Step 6: Total no of lines of code-Total no of lines of

matched code/ 100

Step 7: Show result

Step 8: Stop

B. Words or String Search

Searching process is very important process in

similar word search. Here, word search means

method search and parameters used in the program.

This tool searches the multiple string matching given

a program K=k1,k2,k3…..kn and want to search

similar set of strings.

L= l1,l2,l3…..ln be the total no. of lines of code.

Where li = li
1, l

i
2, l

i
3,….. l

i
ni, is the length of strings ni,

for i=1,…..n.

Define |L| = Σr i=1 |L
i|= Σr

i-1 mi and let lmin and lmax

denote the minimum and maximum length of any

pattern in L, respectively

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-12
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

53 www.ijdcst.com

Copy code
in editor

Search in Google

Int main()
std:cout«

"HELLO WORLD!",
std:cout

«"i'm a C++ program";

Result

 Ontology
 Editor

 Cloned code

 68.23% code is cloned

Int main()
std:cout«

"HELLO WORLD!",
std:cout

«"i'm a C++ program";

Int main()
std:cout«

"HELLO WORLD!",
std:cout

«"i'm a C++ program";

Int main()
std:cout«

"HELLO WORLD!",
std:cout

«"i'm a C++ program";

 Analyse editor
 will manage
 the givencode

 Anlayse the code&
 ident ify the programming

 language

Fig 1: Matching the cloning or duplicate code for

C++ using ontology editor

IV. EXPERIMENTAL RESULTS:

Dupien is developed with Netbeans IDE with java

code and integrated with ontology editor tool.

Installation process as follows: Microsoft Windows

(SolidSDD has been tested under Windows XP,

Windows Vista, and Windows 7)

Memory: 1GB minimum, 4 GB advised;

Graphics card: OpenGL 1.0 compliant in full-color

(RGBA) mode, resolution of 1024 x 768 minimum,

1280 x 1024 or higher advised;

Hard disk space: 100 MB free minimum. The actual

amount of free space required is dependent on the

size of the analyzed repository and the type of

analysis being performed.

V. CONCLUSION

The proposed work research on the detection of clone

code or duplicate code from various resources using

two algorithms that are code processing algorithm

and code matching algorithm. After research on

various tools of cloning detection codes our approach

shows the better detection process compare with

other cloning tools.

 In this paper, we develop dupian for code editing and

checking of the code. It checks the various string

matching, method matching and parameters matching

using ontology editor. Our tool will show the

matching content in terms of percentage (%).

Approximately we got 70% of cloning code is

analyze and detected by using ontology editor that

increase rate of detection is up to 10 % overall

accuracy is 70%. In future work, increase the

program compatibility of the detection of duplicate

code for number of programming languages and

develop the advanced compiler for checking all the

compatible programming languages.

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-12
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

54 www.ijdcst.com

REFERENCES:

[1] Using redundancies to find errors. In: Proceedings

of the 10th ACM SIGSOFT symposium on

Foundations of software engineering, ACM Press

(2002) 51–60, Xie, Y., Engler, D

[2] Using redundancies to find errors. IEEE

Computer Society Transactions on Software

Engineering 29(10) (2003) 915–928, Xie, Y., Engler,

D.:

[3] Baker, B.S.: On finding duplication and near-

duplication in large software systems. InWills, L.,

Newcomb, P., Chikofsky, E., eds.: SecondWorking

Conference on Reverse Engineering, Los Alamitos,

California, IEEE Computer Society Press (1995) 86–

95

[4] Kontogiannis, K., Mori, R.D., Merlo, E., Galler,

M., Bernstein, M.: Pattern matching for clone and

concept detection. Automated Software Engineering

3(1/2) (1996) 79–108

[5] Lague, B., Proulx, D., Mayrand, J., Merlo, E.,

Hudepohl, J.:Assessing the benefits of incorporating

function clone detection in a development process.

In: International Conference on Software

Maintenance. (1997) 314–321

[6] Ducasse, S., Rieger, M., Demeyer, S.: A

Language Independent Approach for Detecting

Duplicated Code. In: International Conference on

Software Maintenance.(1999) 109–118

[7] Walenstein, A., Jyoti, N., Li, J., Yang, Y.,

Lakhotia, A.: Problems creating task-relevant clone

detection reference data. In: Working Conference on

Reverse Engineering, IEEE Computer Society Press

(2003)

[8] Baker, B.S.: A program for identifying duplicated

code. In: Computer Science and Statistics 24:

Proceedings of the 24th Symposium on the Interface.

(1992) 49–57

[10] Balazinska, M., Merlo, E., Dagenais, M., Lague,

B., Kontogiannis, K.: Measuring clone based

reengineering opportunities. In: IEEE Symposium on

Software Metrics, IEEE Computer Society Press

(1999) 292–303

[11] Balazinska, M., Merlo, E., Dagenais, M., Lague,

B., Kontogiannis, K.: Partial redesign of java

software systems based on clone analysis. In:

Working Conference on Reverse Engineering, IEEE

Computer Society Press (1999) 326–336

[12] Balazinska, M., Merlo, E., Dagenais, M., Lague,

B., Kontogiannis, K.: Advanced clone-analysis to

support object-oriented system refactoring. In:

Working Conference on Reverse Engineering, IEEE

Computer Society Press (2000) 98–107

[13] Kapser, C., Godfrey, M.W.: Toward a taxonomy

of clones in source code: A case study. In: Evolution

of Large Scale Industrial Software Architectures.

(2003)

[14] Kapser, C., Godfrey, M.: A taxonomy of clones

in source code: The reengineers most wanted list. In:

Working Conference on Reverse Engineering, IEEE

Computer Society Press (2003)

[15] Kim, M., Bergman, L., Lau, T., Notkin, D.: An

ethnographic study of copy and paste programming

practices in OOPL. In: International Symposium on

Empirical Software Engineering, IEEE Computer

Society Press (2004) 83–92

[16] Bruntink, M., van Deursen, A., Tourwe, T., van

Engelen, R.: An evaluation of clone detection

techniques for crosscutting concerns. In: International

Conference on Software Maintenance. (2004) 200–

209

IJDCST @Oct-Nov-2015, Issue- V-3, I-7, SW-12
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

55 www.ijdcst.com

[17] Kapser, C., Godfrey, M.W.:”clones considered

harmful” considered harmful. In: Working

Conference on Reverse Engineering. (2006)

[18] Nickell, E., Smith, I.: Extreme programming and

software clones. In: Working Conference on Reverse

Engineering, IEEE Computer Society Press (2003)

[19] Fowler, M.: Refactoring: improving the design

of existing code. Addison Wesley (1999)

[20] Monden, A., Nakae, D., Kamiya, T., Sato, S.,

Matsumoto, K.: Software quality analysis by code

clones in industrial legacy software. In: IEEE

Symposium on Software Metrics. (2002) 87–94

[21] Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Copy-

paste and related bugs in large-scale software code.

IEEE Computer Society Transactions on Software

Engineering 32(3) (2006) 176–192

[22] Antoniol, G., Casazza, G., Penta, M.D., Merlo,

E.: Modeling clones evolution through time series.

In: International Conference on Software

Maintenance, IEEE Computer Society Press (2001)

273–280

